Законы небесной механики кеплера


статьи

Небесная механика, раздел астрономии, применяющий законы механики для изучения движения небесных тел. Небесная механика занимается предвычислением положения Луны и планет, предсказанием места и времени затмений, в общем, определением реального движения космических тел.

Естественно, что небесная механика в первую очередь изучает поведение тел Солнечной системы – обращение планет вокруг Солнца, спутников вокруг планет, движение комет и других малых набесных тел.

Тогда как перемещение далеких звезд удается заметить, в лучшем случае, за десятилетия и века, движение членов Солнечной системы происходит буквально на глазах – за дни, часы и даже минуты. Поэтому его изучение стало началом современной небесной механики, рожденной трудами И.Кеплера (1571–1630) и И.Ньютона (1643–1727).

Кеплер впервые установил законы планетного движения, а Ньютон вывел из законов Кеплера закон всемирного тяготения и использовал законы движения и тяготения для решения небесно-механических проблем, не охваченных законами Кеплера.

После Ньютона прогресс в небесной механике в основном заключался в развитии математической техники для решения уравнений, выражающих законы Ньютона. Таким образом, принципы небесной механики – это «классика» в том смысле, что и сегодня они такие же, как во времена Ньютона.

Законы движения Ньютона

Чтобы лучше понять методы и результаты небесной механики, познакомимся с законами Ньютона и проиллюстрируем их простыми примерами.

Закон инерции

Согласно этому закону, в системе отсчета, движущейся без ускорения, каждое тело сохраняет состояние покоя или прямолинейного и равномерного движения, если на него не действует внешняя сила.

Это противоречит положению аристотелевой физики, утверждающему, что для поддержания движения тела требуется сила. Закон Ньютона говорит, что внешняя сила необходима только для приведения тела в движение, для его остановки или для изменения направления и величины его скорости.

Темп изменения скорости тела по величине или направлению называется «ускорением» и свидетельствует о том, что на тело действует сила. Для небесных тел обнаруженное из наблюдений ускорение служит единственным указателем действующей на них внешней силы.

Понятие о силе и ускорении позволяет с единой позиции объяснить движение всех тел в природе: от теннисного мяча до планет и галактик.

Поскольку объект, движущийся по искривленной траектории, испытывает ускорение, было заключено, что Земля на ее орбите вокруг Солнца постоянно подвергается влиянию силы, которую назвали «гравитацией». Задача небесной механики состоит в том, чтобы определить действующую на небесное тело силу гравитации и выяснить, как она влияет на его движение.

Закон силы

Если к телу приложена сила, то оно движется ускоренно, причем чем больше сила, тем больше ускорение. Однако одна и та же сила вызывает различное ускорение у разных тел. Характеристикой инертности тела (т.е.

сопротивления ускорению) служит его «масса», которую в первом приближении можно определить как «количество вещества»: чем больше масса тела, тем меньше его ускорение под действием заданной силы. Таким образом, второй закон Ньютона утверждает, что ускорение тела пропорционально приложенной к нему силе и обратно пропорционально его массе.

Если из наблюдений известны ускорение тела и его масса, то, используя этот закон, можно вычислить действующую на тело силу.

Закон противодействия

Этот закон утверждает, что взаимодействующие тела прилагают друг к другу равные по величине, но противоположно направленные силы. Поэтому в системе из двух тел, влияющих друг на друга одинаковой по величине силой, каждое испытывает ускорение, обратно пропорциональное его массе.

Значит, лежащая на прямой между ними точка, удаленная от каждого обратно пропорционально его массе, будет двигаться без ускорения, несмотря на то, что каждое из тел движется ускоренно. Эту точку называют «центром масс»; вокруг нее обращаются звезды в двойной системе.

Если одна из звезд вдвое массивнее другой, то она движется вдвое ближе к центру масс, чем ее соседка.

Законы Кеплера

Чтобы изучать движение небесных тел, познакомимся с силой гравитации.

Лучше всего это сделать на примере взаимного движения двух тел: компонентов двойной звезды или Земли вокруг Солнца (для простоты предполагая, что другие планеты отсутствуют). К таким системам применимы законы Кеплера.

В основе их лежит тот факт, что оба взаимодействующих тела движутся в одной плоскости. Это означает, что и сила гравитации всегда лежит в той же плоскости.

Закон эллипсов

Первый закон Кеплера утверждает, что планеты Солнечной системы движутся по эллипсам, в одном из фокусов которого находится Солнце.

Фактически этот закон справедлив только для системы из двух тел, например для двойной звезды.

Но и в Солнечной системе он выполняется довольно точно, поскольку на движение каждой планеты в основном влияет массивное Солнце, а все остальные тела влияют несравненно слабее.

Закон площадей

Если отмечать не только положение планеты, но и время, то можно узнать не только форму орбиты, но и характер движения планеты по ней.

Оно подчиняется второму закону Кеплера, утверждающему, что линия, соединяющая Солнце и планету (или компоненты двойной звезды), за равные интервалы времени «заметает» равные площади. Например, эта линия между Солнцем и Землей каждые сутки заметает 2ґ1014 квадратных километров.

Из закона площадей следует, что Солнце притягивает планету строго по прямой, соединяющей их центры. Верно и обратное: для любой центральной силы справедлив второй закон Кеплера.

Рассмотрим планету (рис. 1), перемещающуюся из точки A в B за единицу времени. Если бы притяжение к точке O, где расположено Солнце, отсутствовало, то за следующую единицу времени планета переместилась бы в точку Y, такую, что AB = BY. С другой стороны, при наличии притяжения покоящееся в точке B тело переместилось бы за это время на расстояние x.

Чтобы найти точку C, в которую действительно переместится планета, проведем прямую CY длиной x параллельно OB. Перпендикуляры, опущенные из точек Y и C на отрезок OB, очевидно, равны между собой. Если отрезок YD есть перпендикуляр из точки Y, а отрезок AE – перпендикуляр из точки A, то и они равны между собой из равенства треугольников YDB и AEB.

Следовательно, высоты треугольников OBC и OBA равны, а значит, равны и площади этих треугольников, поскольку OB – их общее основание. Тем самым мы доказали, что за равные времена прямая, соединяющая планету с Солнцем (ее называют «радиусом-вектором» планеты), заметает равные площади.

Если бы сила притяжения не была направлена точно к Солнцу, то отрезок CY не был бы параллелен прямой OB, и наше доказательство не было бы справедливым.

Разумеется, приведенное выше доказательство справедливо лишь для бесконечно малых значений углов BOC и BOA. Однако любой отрезок орбиты можно представить как последовательность большого числа таких фигур, поэтому и для него доказательство останется справедливым.

Гармонический закон

Еще больше можно узнать о силе гравитации из третьего закона Кеплера, связывающего размер планетной орбиты с периодом обращения по ней.

Его называют гармоническим законом, поскольку склонный к мистике Кеплер считал эту связь проявлением «небесной гармонии».

Закон гласит, что если а – большая полуось эллиптической орбиты планеты, а P – период обращения по ней, то отношение a3/P2 одинаково для всех планет.

Рассмотрим некоторую планету, обращающуюся вокруг Солнца по круговой орбите радиуса a. Солнце притягивает ее с постоянной по величине силой, сообщая ускорение, необходимое для равномерного изменения направления движения.

Найдем это ускорение, вычислив изменение скорости планеты V за единицу времени (рис. 2). За период оборота планеты по орбите, равный 2pa/V, вектор скорости совершает полный поворот. Поэтому изменение скорости за это время равно длине окружности радиуса V.

Изменение скорости за единицу времени, т.е. ускорение, составляет

Обозначив орбитальный период через P, мы можем записать скорость как V = 2pa/Р. Тогда из выражения для ускорения получим, что оно пропорционально (a/P)2/a, или a/P2. Домножив числитель и знаменатель на a2, запишем это выражение так: (a3/P2)Ч(1/a2).

Но, согласно гармоническому закону Кеплера, первый сомножитель постоянен – его значение одинаково для всех тел Солнечной системы. Значит, центростремительное ускорение и вызывающая его сила гравитации пропорциональны второму сомножителю, т.е. изменяются обратно пропорционально квадрату расстояния от Солнца.

(Хотя мы доказали это только для круговой орбиты, более изощренные математические методы позволяют доказать это и для эллиптических орбит.)

Гармонический закон утверждает, что период обращения планеты зависит только от ее расстояния от Солнца и не зависит от ее массы. Значит, все тела, движущиеся по одной орбите, должны иметь одинаковую скорость.

Закон всемирного тяготения Ньютона

Анализируя законы Кеплера и наблюдательные данные о движении Луны, Ньютон сформулировал новый закон: каждая частица вещества притягивается к любой другой частице вдоль соединяющей их прямой с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Это всеобщий закон; он не ограничен влиянием Солнца на планеты. Он описывает также взаимодействие двух звезд, планеты и ее спутника, Земли и метеорита, Солнца и кометы.

Все вещество во Вселенной подчиняется этому закону, поэтому его называют законом всемирного тяготения.

Всеобщность этого закона дополняется его уникальностью: как доказали математики, планетные орбиты имеют вид эллипсов, в фокусе которых находится Солнце, только в том случае, если притяжение меняется обратно пропорционально квадрату расстояния.

Казалось бы, попытка на основе ньютоновых законов движения и гравитации исследовать относительное движение взаимно притягивающихся тел должна привести к выводу знакомых нам законов Кеплера.

Но это решительно не так, ибо законы Кеплера справедливы только в том случае, если: 1) взаимодействуют не более двух тел; 2) тела движутся по замкнутым орбитам; 3) масса одного из тел пренебрежимо мала по сравнению с массой другого.

Эти условия делают анализ предельно простым, но они совершенно не обязательны для применения законов движения и гравитации. Используя эти общие законы, мы можем пренебречь указанными ограничениями. Сделаем это, отказываясь каждый раз лишь от одного из них.

Во-первых, можно показать, что орбита может быть не только эллипсом (частный случай которого – окружность), но также параболой или гиперболой. Все эти кривые называют «коническими сечениями», поскольку они получаются при пересечении прямого кругового конуса плоскостью.

Круг и эллипс – замкнутые кривые; парабола и гипербола – незамкнутые.

Спутник, движущийся по замкнутой орбите, совершает одинаковые обороты снова и снова, а спутник, движущийся по незамкнутой кривой, приближается к главному телу с бесконечно далекого расстояния и, пролетев поблизости от него, вновь удаляется на бесконечность.

Во-вторых, можно показать, что «постоянная» величина a3/P2 в гармоническом законе численно равна сумме масс двух взаимодействующих тел, если a выражено в расстояниях Земли от Солнца (в астрономических единицах), P – в периодах обращения Земли (в годах), а масса – в сумме масс Земли и Солнца. Поскольку в Солнечной системе масса любой планеты не превосходит тысячной доли массы Солнца, величины a3/P2 для всех планет различаются не более чем на 0,1%. Будь планеты массивнее, Кеплер не смог бы сформулировать свой гармонический закон. В общем виде этот закон выглядит так:

где M и m – массы компонентов системы, например Земли и Луны или звезд в двойной системе, причем значения масс могут быть любыми. (Все значения величин в этой формуле должны быть выражены в единой системе, например: астрономическая единица, год, масса Солнца.) Этот закон астрономы используют для определения масс различных космических объектов.

Можно также исследовать поведение трех или более взаимно притягивающихся тел.

Закон тяготения позволяет вычислить силу, действующую на каждое из тел со стороны остальных, а законы движения – определить, как изменяется от этого его скорость.

В случае двух тел их траектории движения могут быть представлены простыми уравнениями Кеплера. Но если тел больше, то это невозможно сделать с помощью конечного числа уравнений.

Этот последний случай наиболее часто встречается в небесной механике Солнечной системы. Важную проблему трех тел представляет система Земля – Луна – Солнце, но и здесь для точного вычисления орбиты Луны приходится учитывать возмущения со стороны других планет (особенно Юпитера и Сатурна), влияние экваториального вздутия Земли и даже влияние приливов, которые Луна вызывает в океанах Земли.

Интерес к классической небесной механике значительно возрос в последние десятилетия в связи с необходимостью расчета орбит искусственных спутников и межпланетных аппаратов. Мощные компьютеры сделали возможным быстрое решение любой небесно-механической задачи с высокой точностью.

Впервые для таких расчетов был использован компьютер SSEC фирмы IBM размером с комнату. Для вычисления положений Юпитера, Сатурна, Урана, Нептуна и Плутона с интервалом в 40 сут с 1653 по 2060 ему понадобилось 140 ч; сегодня рядовой компьютер делает это менее чем за 2 с.

Теперь с помощью мощнейших компьютеров стало возможным решать такие задачи, которые были совершенно не доступны классической небесной механике: можно проследить на протяжении миллиардов лет эволюцию скопления, состоящего из сотен тысяч звезд; можно детально рассчитать, как исказится форма двух сталкивающихся галактик. Компьютер вдохнул новую жизнь в небесную механику.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/NEBESNAYA_MEHANIKA.html

Законы Кеплера – Ii основы небесной механики – Урок №10 Законы движения небесных тел

Page 3

Page 4

Page 5

Page 6

Источник: http://nashuch.ru/ii-osnovi-nebesnoj-mehaniki.html?page=4

План:

    Введение

  • 1 Законы движения Ньютона
  • 2 Законы Кеплера
  • Литература

Небе́сная меха́ника — раздел астрономии, применяющий законы механики для изучения движения небесных тел. Небесная механика занимается предвычислением положения Луны и планет, предсказанием места и времени затмений, в общем, определением реального движения космических тел.

Естественно, что небесная механика в первую очередь изучает поведение тел Солнечной системы — обращение планет вокруг Солнца, спутников вокруг планет, движение комет и других малых небесных тел.

Тогда как перемещение далеких звёзд удается заметить, в лучшем случае, за десятилетия и века, движение членов Солнечной системы происходит буквально на глазах — за дни, часы и даже минуты. Поэтому его изучение стало началом современной небесной механики, рождённой трудами И. Кеплера (1571—1630) и И. Ньютона (1643—1727).

Кеплер впервые установил законы планетного движения, а Ньютон вывел из законов Кеплера закон всемирного тяготения и использовал законы движения и тяготения для решения небесно-механических проблем, не охваченных законами Кеплера. После Ньютона прогресс в небесной механике в основном заключался в развитии математической техники для решения уравнений, выражающих законы Ньютона.

Таким образом, принципы небесной механики — это «классика» в том смысле, что и сегодня они такие же, как во времена Ньютона. Применение результатов небесной механики к движению искусственных спутников и космических кораблей составляет астродинамику.

1. Законы движения Ньютона

Чтобы лучше понять методы и результаты небесной механики, познакомимся с законами Ньютона и проиллюстрируем их простыми примерами.

Закон инерции. Согласно этому закону, в системе отсчета, движущейся без ускорения, каждое тело сохраняет состояние покоя или прямолинейного и равномерного движения, если на него не действует внешняя сила.

Это противоречит положению аристотелевой физики, утверждающему, что для поддержания движения тела требуется сила. Закон Ньютона говорит, что внешняя сила необходима только для приведения тела в движение, для его остановки или для изменения направления и величины его скорости.

Темп изменения скорости тела по величине или направлению называется «ускорением» и свидетельствует о том, что на тело действует сила. Для небесных тел обнаруженное из наблюдений ускорение служит единственным указателем действующей на них внешней силы.

Понятие о силе и ускорении позволяет с единой позиции объяснить движение всех тел в природе: от теннисного мяча до планет и галактик.

Поскольку объект, движущийся по искривлённой траектории, испытывает ускорение, было заключено, что Земля на её орбите вокруг Солнца постоянно подвергается влиянию силы, которую назвали «гравитацией». Задача небесной механики состоит в том, чтобы определить действующую на небесное тело силу гравитации и выяснить, как она влияет на его движение.

Закон силы. Если к телу приложена сила, то оно движется ускоренно, причем чем больше сила, тем больше ускорение. Однако одна и та же сила вызывает различное ускорение у разных тел.

Характеристикой инертности тела (то есть сопротивления ускорению) служит его «масса», которую в первом приближении можно определить как «количество вещества»: чем больше масса тела, тем меньше его ускорение под действием заданной силы.

Таким образом, второй закон Ньютона утверждает, что ускорение тела пропорционально приложенной к нему силе и обратно пропорционально его массе.

Если из наблюдений известны ускорение тела и его масса, то, используя этот закон, можно вычислить действующую на тело силу (На самом деле Ньютону принадлежит другая, более сложная формулировка этого закона; он утверждал, что сила, действующая на тело, есть скорость изменения импульса этого тела).

Закон противодействия. Этот закон утверждает, что взаимодействующие тела прилагают друг к другу равные по величине, но противоположно направленные силы. Поэтому в системе из двух тел, влияющих друг на друга одинаковой по величине силой, каждое испытывает ускорение, обратно пропорциональное его массе.

Значит, лежащая на прямой между ними точка, удалённая от каждого обратно пропорционально его массе, будет двигаться без ускорения, несмотря на то, что каждое из тел движется ускоренно. Эту точку называют «центром масс»; вокруг неё обращаются звёзды в двойной системе.

Если одна из звёзд вдвое массивнее другой, то она движется вдвое ближе к центру масс, чем её соседка.

2. Законы Кеплера

Чтобы изучать движение небесных тел, познакомимся с силой гравитации.

Лучше всего это сделать на примере взаимного движения двух тел: компонентов двойной звезды или Земли вокруг Солнца (для простоты предполагая, что другие планеты отсутствуют). К таким системам применимы законы Кеплера.

В основе их лежит тот факт, что оба взаимодействующих тела движутся в одной плоскости. Это означает, что и сила гравитации всегда лежит в той же плоскости.

Закон эллипсов. Первый закон Кеплера утверждает, что планеты Солнечной системы движутся по эллипсам, в одном из фокусов которого находится Солнце.

Фактически этот закон справедлив только для системы из двух тел, например для двойной звезды.

Но и в Солнечной системе он выполняется довольно точно, поскольку на движение каждой планеты в основном влияет массивное Солнце, а все остальные тела влияют несравненно слабее.

Закон площадей. Если отмечать не только положение планеты, но и время, то можно узнать не только форму орбиты, но и характер движения планеты по ней.

Оно подчиняется второму закону Кеплера, утверждающему, что линия, соединяющая Солнце и планету (или компоненты двойной звезды), за равные интервалы времени «заметает» равные площади. Например, эта линия между Солнцем и Землей каждые сутки заметает 2×1014 квадратных километров.

Из закона площадей следует, что Солнце притягивает планету строго по прямой, соединяющей их центры. Верно и обратное: для любой центральной силы справедлив второй закон Кеплера…

Литература

  • Marquis de la Place. Mécanique céleste. Hillard, Gray, Little, and Wilkins, 1829.

скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.

11 01:05:44
Похожие рефераты: Манна небесная, Небесная Ярмарка, Небесная сфера, Небесная улица, Небесная улица (Липецк), Международная небесная система координат, Поп-механика, Механика, Игровая механика.

Категории: Астрономия, Небесная механика.

Текст доступен по лицензии Creative Commons Attribution-ShareA.

Источник: http://wreferat.baza-referat.ru/%D0%9D%D0%B5%D0%B1%D0%B5%D1%81%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0

Законы Кеплера: первый, второй и третий

И. Кеплер всю свою жизнь пытался доказать, что наша Солнечная система – это какое-то мистическое искусство. Изначально он пытался доказать, что устройство системы имеет сходство с правильными многогранниками из древнегреческой геометрии. Во времена Кеплера было известно о существовании шести планет. Считалось, что они помещаются в хрустальные сферы.

По утверждению ученого, эти сферы располагались таким образом, что между соседствующими точно вписываются многогранники правильной формы. Между Юпитером и Сатурном поместился куб, вписанный во внешнюю среду, в которую вписана сфера. Между Марсом и Юпитером находится тетраэдр, и т.п.

После долгих лет наблюдений за небесными объектами, появились законы Кеплера, а свою теорию о многогранниках он опроверг.

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил законы движения планет вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна.

После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам.

Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Изучение движения тел позволяет ученому установить, что скорость планеты больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную. На практике это видно по движению Земли.

Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года.

В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии.

Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля.

По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение – возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве.

В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой.

В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой.

Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы.

При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.

Источник: https://FB.ru/article/387267/zakonyi-keplera-pervyiy-vtoroy-i-tretiy

4. Законы Кеплера.

Первый закон Кеплера. Все планеты Солнечной системы вращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Второй закон Кеплера Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади: скорость движения планет максимальна в перигелии и минимальна в афелии.Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца соотносятся между собой, как кубы их средних расстояний от Солнца:

Основная задача небесной механики – это исследование движения небесных тел под действием сил всемирного тяготения. А именно расчет орбит планет, комет, астероидов, искусственных спутников Земли, космических аппаратов, звезд в двойных и кратных системах. Все задачи в математическом смысле очень трудны и за редким исключением решаются только численными методами с помощью самых больших ЭВМ. Однако модельные задачи, в которых тела рассматриваются как материальные точки и можно пренебречь влиянием других тел, можно решить в общем виде, т.е. получить формулы для орбит планет и спутников. Простейшей считается задача двух тел, когда одно значительно больше другого и система отсчета связана с этим большим телом.

Именно для этого случая три закона движения планет относительно Солнца были получены эмпирически Иоганном Кеплером. Как же он это сделал? Кеплеру были известны: координаты Марса на небесной сфере с точностью до 2” по данным наблюдений его учителя Тихо Браге; относительные расстояния планет от Солнца; синодические и сидерические периоды обращения планет. Далее он рассуждал примерно так.

Известно положение Марса во время противостояния (см. рис.). В треугольнике АВС буква А обозначает положение Марса, В – Земли, С – Солнца.

Через промежуток времени, равный сидерическому периоду обращения Марса (687 дней) планета вернется в точку А, а Земля за это время переместится в точку В’.

Поскольку угловые скорости движения Земли в течение года известны (они равны угловым скоростям видимого движения Солнца по эклиптике), можно вычислить угол АСВ’.

Определив координаты Марса и Солнца в момент прохождения Землей через точку В’, мы можем, зная в треугольнике 2 угла, по теореме синусов рассчитать отношение стороны СВ’ к АС.

Еще через один оборот Марса Земля придет в положение В” и можно будет определить отношение СВ” к тому же отрезку АС и т.д. Таким образом, точка за точкой можно получить представление об истинной форме орбиты Земли, установить, что она является эллипсом, в фокусе которого находится Солнце. Можно определить что, если время движения по дуге M3M4 = времени движения по дуге M1M2, то Пл. SM3M4 = Пл. SM1M2.

F1 и F2–фокусы эллипса, c-фокусное расстояние, а- большая полуось эллипса и среднее расстояние от планеты до Солнца.

Поделитесь с Вашими друзьями:

2. Петлеобразное движение планет.

Невооруженным глазом мы можем наблюдать пять планет- Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты относятся к тем светилам, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются на фоне зодиакальных созвездий, так как они вращаются вокруг Солнца.

Если проследить за ежегодным перемещением какой-нибудь планеты, каждую неделю отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю, которая объясняется тем, что мы наблюдаем движение планет не с неподвижной Земли, а с Земли, вращающейся вокруг Солнца.

Поделитесь с Вашими друзьями:

3. Иоганн Кеплер и Исаак Ньютон.

Два величайших ученых намного обогнавшие свое время, они создали науку, которая называется небесной механикой, то есть открыли законы движения небесных тел под действием сил тяготения, и даже если бы этим их достижения ограничились, они все равно бы вошли в пантеон великих мира сего.

Так случилось, что они не пересеклись во времени. Только через тринадцать лет после смерти Кеплера родился Ньютон. Оба они являлись сторонниками гелиоцентрической системы Коперника.

Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это был каторжный труд и гениальное предвидение.

Зато Ньютон именно законами Кеплера проверял свой закон тяготения. Все три закона Кеплера являются следствиями закона тяготения. И открыл его Ньютон в 23 года. В это время 1664 – 1667 годы в Лондоне свирепствовала чума. Тринити колледж, в котором преподавал Ньютон, был распущен на неопределенный срок, дабы не усугубить эпидемию.

Ньютон возвращается к себе на родину и за два года совершает переворот в науке, сделав три важнейших открытия: дифференциальное и интегральное исчисление, объяснение природы света и закон всемирного тяготения. Исаак Ньютон был торжественно похоронен в Вестминстерском аббатстве.

Над его могилой высится памятник с бюстом и эпитафией «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики в руке движение планет, пути комет и приливы океанов… Пусть смертные радуются, что существует такое украшение рода человеческого».

Поделитесь с Вашими друзьями:

5. Закон всемирного тяготения Ньютона.

Исаак Ньютон смог объяснить движение тел в космическом пространстве с помощью закона всемирного тяготения. Он пришел к своей теории в результате многолетних исследований движения Луны и планет. Но упрощенный вывод закона всемирного тяготения можно сделать и из третьего закона Кеплера.

Пусть планеты движутся по круговым орбитам, их центростремительные ускорения равны: , где Т – период обращения планеты вокруг Солнца, R – радиус орбиты планеты. Из III закона Кеплера или . Следовательно, ускорение любой планеты независимо от ее массы обратно пропорционально квадрату радиуса ее орбиты: .

Согласно II закону Ньютона, сила F, сообщающая планете это ускорение, равна: (1) т.е. прямо пропорциональна массе планеты и обратно пропорциональна квадрату расстояния от нее до Солнца.

Согласно III закону Ньютона, сила F’ , действующая на планету со стороны Солнца, равна ей по модулю, противоположна по направлению и равна: , где М – масса Солнца. Поскольку F = F’ , =. Обозначим , где G = 6,67∙10–11 Н∙м2/кг2 – гравитационная постоянная.

Тогда и выражение (1) можно записать в виде известной нам формулы закона Всемирного тяготения:. Сила тяготения между Солнцем и планетой пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Этот закон справедлив для любых сферически симметричных тел, а приближенно он выполняется для любых тел, если расстояние между ними велико по сравнению с их размерами.

Ускорение, которое, согласно второму закону Ньютона, испытывает тело m, находящееся на расстоянии r от тела M, равно: частности, ускорение свободного падения в поле Земли равно, , где -масса Земли, – расстояние до ее центра.

Вблизи поверхности Земли ускорение свободного падения равно g = 9,8 м/с2. Сплюснутость Земли и ее вращение приводят к отличию силы тяжести на экваторе и возле полюсов: ускорение свободного падения в точке наблюдения может приближенно высчитываться по формуле g = 9,78 ∙ (1 + 0,0053 sin φ), где φ – широта этой точки.

Необычно ведет себя сила тяжести внутри Земли. Если Землю принять за однородный шар, сила тяжести растет пропорционально расстоянию до центра шара r.

Поделитесь с Вашими друзьями:

6. Конические сечения.

Конические сечения образуются при пересечении прямого кругового конуса с плоскостью. К коническим сечениям относятся кривые второго порядка: эллипс, парабола и гипербола.

Все они является геометрическим местом точек, расстояния от которых до заданных точек (фокусов) или до заданной прямой (директрисы) есть величина постоянная. Например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: F1M+F2M=2а=const.

Степень вытянутости эллипса характеризуется его эксцентриситетом е. Эксцентриситет е =с/а. При совпадении фокусов с центром е = 0, и эллипс превращается в окружность. Большая полуось а является средним расстоянием от фокуса до эллипса. Ближайшая к фокусу точка эллипса называется перицентром, самая удаленная – апоцентром.

Расстояние от фокуса до перицентра равно ПF1 = a (1 – e), до апоцентра – F1A = a (1 + e).

Поделитесь с Вашими друзьями:

7. Ревизия законов Кеплера.

Итак, Кеплер открыл свои законы эмпирическим путем. Ньютон же вывел законы Кеплера из закона всемирного тяготения. В результате этого претерпели изменения первый и третий законы.

Первый закон Кеплера был обобщен и его современная формулировка звучит так: Траектории движения небесных тел в центральном поле тяготения представляют собой конические сечения: эллипс, окружность, параболу или гиперболу, в одном из фокусов которой находится центр масс системы.

Форма траектории определяется величиной полной энергии движущегося тела, которая складывается из кинетической энергии К тела массы m, движущегося со скоростью v, и потенциальной энергии U тела, находящегося в гравитационном поле на расстоянии r от тела с массой М.

При этом действует закон сохранения полной энергии тела. Е=К + U = const; К = mv2/2, U=-GMm/r.

Закон сохранения энергии можно переписать в виде: (2).

Константа h называется постоянной энергии. Она прямо пропорциональна полной механической энергии тела E и зависит только от начального радиус-вектора r0 и начальной скорости v0. При h финитным, т.е. замкнутым.

Для h = 0 при неограниченном возрастании радиус-вектора тела его скорость уменьшается до нуля – это движение по параболе. Такое движение – инфинитно, неограниченно в пространстве. При h > 0 кинетическая энергия тела достаточно велика, и на бесконечном расстоянии от притягивающего центра тело будет иметь ненулевую скорость удаления от него – это движение по гиперболе.

Таким образом, можно сказать, что тело движется относительно притягивающего центра только по орбитам, являющимися коническими сечениями. Как следует из формулы (2), приближение тела к притягивающему центру всегда должно сопровождаться увеличением орбитальной скорости тела, а удаление – уменьшением в соответствии со вторым законом Кеплера.

Второй закон Кеплера не подвергся ревизии, а вот третий был уточнен, и звучит он так: отношение куба большой полуоси.

планетной орбиты к квадрату периода обращения планеты вокруг Солнца равно сумме масс Солнца и планеты, где (3)M и m массы Солнца и планеты, соответственно; а и Т – большая полуось и период обращения планеты. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

В обобщенном виде этот закон обычно формулируется (4) так: Произведение сумм масс небесных тел и их спутников с квадратами их сидерических периодов обращения относятся как кубы больших полуосей их орбит, где М1 и М2 – массы небесных тел, m1 и m2 – соответственно массы их спутников, а1 и а2 – большие полуоси их орбит, Т1 и Т2 – сидерические периоды обращения. Необходимо понять, что закон Кеплера связывает характеристики движения компонентов любых произвольных и независимых космические систем. В эту формулу могут входить одновременно Марс со спутником, и Земля с Луной, или Солнце с Юпитером.

Если мы применим этот закон к планетам Солнечной системы и пренебрежем массами планет М1 и М2 в сравнении с массой Солнца М☼ (т.е. M