Первый закон ньютон примеры

Законы Ньютона

Первый закон ньютон примеры

Зако́ны Ньюто́на — законы классической механики, позволяющие записать уравнения движения для любой механической системы.

Современная формулировка

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий сохраняет состояние покоя или равномерного прямолинейного движения.

Такие системы отсчёта называются инерциальными. По сути, этот закон постулирует инерцию тел, то есть их свойство сопротивляться изменению их текущего состояния.

Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» надо заменить на «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение.

Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает.

С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Второй закон Ньютона утверждает, что

В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки; — сила, приложенная к материальной точке;m — масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна действующей на неё силе.

где — импульс точки,

где — скорость точки;

t — время;

— производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел.

Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия.

Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Литература

Источник: http://cisserver.muctr.edu.ru/stumw/index.php/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0

Инерциальные системы отсчета: первый закон Ньютона

Первый закон ньютон примеры

С древнейших времен движение материальных тел не переставало волновать умы ученых. Так, например, сам Аристотель считал, что если на тело не действуют никакие силы, то такое тело всегда будет находиться в покое.

И лишь только спустя 2000 лет итальянский ученый Галилео Галилей смог исключить из формулировки Аристотеля слово «всегда». Галилей понял, что пребывание тела в состоянии покоя не является единственным следствием отсутствия внешних сил.

Тогда Галилей заявил: тело, на которое не действуют никакие силы, будет либо находиться в покое, либо двигаться равномерно прямолинейно. То есть, движение с одинаковой скоростью по прямой траектории, с точки зрения физики, равнозначно состоянию покоя.

Что есть состояние покоя?

В жизни этот факт наблюдать очень сложно, поскольку всегда имеет место сила трения, которая не дает предметам и вещам покидать свои места. Но если представить себе бесконечно длинный, абсолютно скользкий и гладкий каток, на котором стоит тело, то станет очевидно, что если придать телу импульс, то тело будет двигаться бесконечно долго и по одной прямой.

И в самом деле, на тело действую только две силы: сила тяжести и сила реакции опоры. Но расположены они на одной прямой и направлены друг против друга. Таким образом, по принципу суперпозиции, мы имеем, что общая сила, действующая на такое тело равна нулю.

Однако это идеальный случай. В жизни сила трения проявляет себя почти во всех случаях. Галилей сделал важное открытие, приравняв состояние покоя и движение с постоянной скоростью по прямой линии. Но этого было недостаточно. Оказалось, что условие это выполняется не во всех случаях.

Ясность в этот вопрос внес Исаак Ньютон, обобщивший исследования Галилея и, таким образом, сформулировавший Первый Закон Ньютона.

Первый закон Ньютона: формулируем сами

Существуют две формулировки первого закона Ньютона современная и формулировка самого Исаака Ньютона.

В исходном варианте первый закон Ньютона несколько неточен, а современный вариант в попытках исправить эту неточность оказался очень запутанным и потому неудачным.

Ну а так как истина всегда где-то рядом, то попытаемся найти это «рядом» и разобраться, что же представляет собой данный закон.

Современная формулировка звучит следующим образом: «Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго».

Инерциальные системы отсчета

Инерциальными называют системы отсчета, в которых выполняется закон инерции. Закон же инерции заключается в том, что тела сохраняют свою скорость неизменной, если на них не действуют другие тела.

Получается очень неудобоваримо, малопонятно и напоминает комичную ситуацию, когда на вопрос: “Где это «тут»?” отвечают: “Это здесь”, а на следующий логичный вопрос: “А где это «здесь»?” отвечают: “Это тут”. Масло масляное.

Замкнутый круг.

Формулировка самого Ньютона такова: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

Однако на практике этот закон выполняется не всегда. Убедиться в этом можно элементарно. Когда человек стоит, не держась за поручни, в движущемся автобусе, и автобус резко тормозит, то человек начинает двигаться вперед относительно автобуса, хотя его не понуждает к этому ни одна видимая сила.

То есть, относительно автобуса первый закон Ньютона в изначальной формулировке не выполняется. Очевидно, что он нуждается в уточнении. Уточнением и является введение инерциальных систем отсчета. То есть, таких систем отсчета, в которых первый закон Ньютона выполняется. Это не совсем понятно, поэтому попробуем перевести все это на человеческий язык.

Инерциальные и неинерциальные системы отсчета

Свойство инерции любого тела таково, что до тех пор, пока тело остается изолированным от других тел, оно будет сохранять свое состояние покоя или равномерного прямолинейного движения. «Изолированным» – это значит никак не связанным, бесконечно удаленным от других тел.

На практике это означает, что если в нашем примере за систему отсчета принять не автобус, а какую-то звезду на окраине Галактики, то первый закон Ньютона будет абсолютно точно выполняться для беспечного пассажира, не держащегося за поручни. При торможении автобуса он будет продолжать свое равномерное движение, пока на него не подействуют другие тела.

Вот такие системы отсчета, которые никак не связаны с рассматриваемым телом, и которые никак не влияют на инертность тела, называются инерциальными. Для таких систем отсчета первый закон Ньютона в его исходной формулировке абсолютно справедлив.

То есть закон можно сформулировать так: в системах отсчета, абсолютно никак не связанных с телом, скорость тела при отсутствии стороннего воздействия остается неизменной. В таком виде первый закон Ньютона легко доступен для понимания.

Проблема заключается в том, что на практике очень сложно рассматривать движение конкретного тела относительно таких систем отсчета. Мы не можем переместиться на бесконечно далекую звезду и оттуда осуществлять какие-либо опыты на Земле.

Поэтому за такую систему отсчета условно часто принимают Землю, хотя она и связана с находящимися на ней телами и влияет на характеристики их движения. Но для многих расчетов такое приближение оказывается достаточным. Поэтому примерами инерциальных систем отсчета можно считать Землю для расположенных на ней тел, Солнечную систему для ее планет и так далее.

Первый закон Ньютона не описывается какой-либо физической формулой, однако с помощью него выводятся другие понятия и определения. По сути, этот закон постулирует инертность тел. И таким образом выходит, что для инерциальных систем отсчета закон инерции и есть первый закон Ньютона.

Еще примеры инерциальных систем и первого закона Ньютона

Так, например, если тележка с шаром будет ехать сначала по ровной поверхности, с постоянной скоростью, а потом заедет на песчаную поверхность, то шар внутри тележки начнет ускоренное движение, хотя никакие силы на него не действуют (на самом деле, действуют, но их сумма равна нулю).

Происходит это от того, что система отсчета (в данном случае, тележка) в момент попадания на песчаную поверхность, становится неинерциальной, то есть перестает двигаться с постоянной скоростью.      

Первый Закон Ньютона вносит важное разграничение между инерциальными и неинерциальными системами отсчета. Также важным следствием этого закона является тот факт, что ускорение, в некотором смысле, важнее скорости тела.

Поскольку движение с постоянной скоростью по прямой линии суть нахождение в состоянии покоя. Тогда как движение с ускорением явно свидетельствуют о том, что либо сумма сил, приложенных к телу, не равно нулю, либо сама система отсчета, в которой находится тело, является неинерциальной, то есть движется с ускорением.

Причем ускорение может быть как положительным (тело ускоряется), так и отрицательным (тело замедляется).  

Нужна помощь в учебе?

Предыдущая тема: Относительность движения: понятие и примеры
Следующая тема:   Второй закон Ньютона: формула и определение + маленький опыт

НравитсяНравится

Все неприличные комментарии будут удаляться.

Источник: http://www.nado5.ru/e-book/inercialnye-sistemy-otscheta-pervyi-zakon-nyutona

Первый закон Ньютона — Гипермаркет знаний

Первый закон ньютон примеры

Гипермаркет знаний>>Физика и астрономия>>Физика 8 класс>>Физика: Первый закон Ньютона

Первый закон Ньютона

Сегодняшний урок физики будет посвящен рассмотрению темы о первом законе Ньютона. Давайте вначале озвучим определение этого закона. Итак, первый закон Ньютона гласит:

всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.

То есть, можно сказать, что первый закон Ньютона, является законом инерции и с многообразных систем отсчета, акцентирует внимание на инерциальных системах.

Конечно, вы можете сказать, что инерциальных систем отсчета может быть очень и очень много, но реально на самом деле, мы можем говорить, что такая система немного идеализирована, поскольку при ближайшем рассмотрении таких систем отсчета все таки, нет. А выбираем мы ее специально для того, чтобы решать задачи.

Если мы с вами приступим к рассмотрению вопроса, связанного с инерциальными системами отсчета, то следует отметить, что для таких систем отсчета справедлива формула сложения Галлелея, а все системы отсчета, изученные вами ранее можно считать инерционными в некотором приближении.

То есть, из этого следует определение, что инерцией называется такое свойство тел, при котором они имеют способность сохранять свою скорость при отсутствии действия на него других тел.

Теперь мы с вами можем уверенно сказать, что закон, который связанный с инерционной системой отсчета или же закон инерции – это и есть первый закон Ньютона.

Закон Ньютона заключается в том, что он определил движение в данном случае, как изменение положения тела, но в обязательном случае с изменением скорости. То есть, идея закона такова, что скорость меняется не мгновенно, а ее изменения происходят в результате какого-то действия в течение времени, так как мгновенно изменятся, она не может.

Вот это и легло в основу создания закона, который мы с вами называем первым законом Ньютона.

Говоря о законе Ньютона, необходимо отметить, что он справедлив лишь только для инерционных систем отсчета. Поэтому его мы можем рассматривать, как некое приближенное действие в определенной системе отсчета.

По-другому можно сказать следующее, что инерционной системой отсчета называется такая система, в которой выполняется закон Ньютона.

Также, следует подчеркнуть, что все-таки большая часть систем отсчета не инерциальная.

Давайте попробуем привести пример. Так, вы, сидя в поезде, положили на стол какое-то тело, такое например, как апельсин. Когда поезд трогается с места, мы с вами можем наблюдать довольно таки любопытную картину, мы видим, как апельсин начинает двигаться, то есть он начинает котиться в противоположную сторону от направления движения поезда.

В этом данном случае, мы с вами не сможем определить, какие же тела действуют, то есть, какие тела заставляют этот апельсин двигаться. В этом случае говорят, что данная система не инерциальная. Но, можно выйти из положения, введя силу инерции. Вот такое интересное сочетание мы можем наблюдать на данном примере.

Но приведем еще один пример, когда тело движется не по прямой, а по закругленной поверхности. Например, автомобиль поворачивает на перекрестке.

То в этом случае также возникает сила, которая заставляет отклониться тело от уже прямолинейного направления движения. И в этом случае мы также с вами рассматриваем не инерциальную систему.

Но так же, как и в предыдущем примере, мы можем выйти из положения, учитывая силу инерции.

Таким образов, путем многолетних наблюдений, ученые установили, что инерциальная система отсчета, является звездная система отсчета, так как ее началом координат можно считать центр Солнца, откуда оси проведены в направлении звезд.

Сущность первого закона Ньютона

А теперь давайте попробуем выделить сущность первого закона Ньютона, из которой следуют такие положения:

• Во-первых, из проведенных ряда наблюдений следует, что практически все тела обладают свойствами инерции;• Во-вторых, существуют такие инерционные системы отсчёта, где выполняется первый закон Ньютона;• В-третьих, движение относительно.

А теперь давайте еще рассмотрим примеры выполнения первого закона Ньютона:

Интересные факты из жизни Ньютона

Известно ли вам, что радуга имеет непрерывный многоцветный спектр? А первым человеком, который выделил из этого спектра семь основных цветов, был Исаак Ньютон.

Но первоначально Ньютон в своих трудах, под названием «Оптика» выделил только пять цветов. Это были такие цвета, как красный, желтый, зеленый, голубой и фиолетовый.

Но стремясь создать баланс между тонами музыкальной гаммы и цветов спектра, он добавил еще два цвета.

Такой гениальный ученый, как Исаак Ньютон был человеком всесторонне развитым, поэтому его интерес был прикован не только к физике, а и многим другим наукам.

Однажды он решил провести на себе рискованный эксперимент, чтобы подтвердить возникшую догадку о том, что мы видим окружающий мир, благодаря давлению света на сетчатку глаза.

Для этих целей Ньютон сконструировал из слоновой кости тонкую изогнутую пластину и засунул ее себе в глаз, тем самым надавив на стенку глазного яблока. В итоге такого эксперимента он добился желаемого результата, так как возникновение кругов и цветных вспышек перед глазами подтвердили его гипотезу.

Как известно из исторических фактов, Исаак Ньютон был не только гениальным ученым, но и членом палаты лордов. На протяжении многих лет он регулярно посещал собрания палаты, но при этом никогда не брал слово и не выступал.

Но однажды он нарушил молчание и попросил слова, что привело остальных лордов в восторг в ожидании грандиозной речи. Но Ньютон попросил слова лишь для того, чтобы выполнили его просьбу закрыть окна, чтобы не простудиться.

Исаак Ньютон в последние годы своей жизни принялся писать книгу о самом важном в своей жизни, которая, по его мнению, должна была изменить жизнь людей. Но, увы, этой книге не суждено было увидеть свет, так как его собака опрокинула лампу и в результате сгорела не только рукопись, но и все имущество вместе с домом великого ученого.

А знали ли вы о том, что на своем самом первом логотипе Apple было изображение Исаака Ньютона под яблоней, с которой вот-вот должно было упасть яблоко? Но так как эта композиция была сильно громоздкой, то в итоге ее сменила уже известная нам современная версия с надкушенным яблоком.

А известно ли вам, что в те далекие времена, когда жил Ньютон, монеты ценились по эквиваленту, содержащему в них ценных металлов. Но мошенники были во все времена.

Они умудрялись с краев монет срезать частички металла и делать новые монеты. Чтобы такого не происходило, Исаак Ньютон предложил по краю монет делать небольшие линии-прорези, что делало бы более заметным срезанный край.

Если посмотреть на современные монеты, то они и сейчас оформляются таким же образом.

А знаете ли вы о том, что сохранилось окончание текста письма, в котором Исаак Ньютон предсказывал апокалипсис в 2060 году.

Домашнее задание

1. Как вы думаете, в чем заключается причина движения?2. Сформулируйте первый закон Ньютона.3. Назовите известные вам системы отсчета.4. Назовите инерциальные системы, которые находятся в природе.

презентация урока

Источник: http://edufuture.biz/index.php?title=%D0%9F%D0%B5%D1%80%D0%B2%D1%8B%D0%B9_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0

Кратко и понятно о первом, втором и третьем законах Ньютона: формулировки, примеры и формулы

Первый закон ньютон примеры

Три закона Ньютона — это основа классической механики. В 1867 году Ньютон опубликовал работу под названием «Математические начала натуральной философии».

Там были все знания, накопленные до него другими учёными, а также новые, открытые самим Ньютоном. Его считают одним из самых первых основоположником современной физики.

Благодаря систематизированным знаниям, которые были описаны в вышеуказанном труде, он открыл множество законов механики, Закон всемирного тяготения и многое другое.

  • Кратко о законах Ньютона
  • Первый закон Ньютона
  • Второй закон Ньютона
  • Третий закон Ньютона

Второй закон Ньютона

Он описывает поведение тела при действии на него других объектов. Что с ним происходит, как он начинает двигаться и прочее.

  1. Формулировка. «В инерциальных системах отсчёта ускорение тела с постоянной массой прямо пропорционально равнодействующей всех сил и обратно пропорционально его массе».
  2. Формула. Математическое описание этого утверждения такое: а = F/m, где a — это ускорение, F — равнодействующая всех сил, приложенных к телу, m — масса тела.
  3. Трактовка. Из формулы мы видим, что ускорение тела зависит от силы, приложенной к этому телу, и массы. А также можно увидеть, что чем больше равнодействующая всех сил, то тем больше ускорение, и чем больше масса тела, тем ускорение меньше. Говоря простым языком, если равнодействующая всех сил не равна нулю и не меньше нуля, то выполняется данное утверждение. Можно сказать ещё проще, если на тело действует сила, то оно приобретает ускорение.
  4. Пример действия. Возьмём бейсбольную биту и мяч. Если ударить битой по мячу, и удар будет сильнее действия всех других сил, то мяч приобретёт ускорение равное отношению равнодействующей всех сил к массе.

: формула всемирного тяготения определение закона.

Третий закон Ньютона

  1. Формулировка. «Тела взаимодействуют друг на друга с силами одинаковой природы, направленными вдоль прямой, которая соединяет центры масс этих тел, а силы равны по модулю и разнонаправленны».
  2. Трактовка. Это значит, что на каждое действие есть своё противодействие.
  3. Пример действия.

    Более понятно это можно рассмотреть на таком примере: представьте пушку, из которой стреляют ядром. Ядро будет действовать на пушку с той же силой, с какой пушка вытолкала ядро. Поэтому при выстреле пушка откатится чуть-чуть назад, это происходит из-за того, что размеры пушки и ядра разные. Примерно то же самое происходит и при падении яблока на землю.

    Земля действует на яблоко с некой силой и яблоко тоже действует на Землю. Только из-за того, что масса Земли в миллионы раз больше яблока этого действия не видно. Еще один пример действия Третьего закона для закрепления усвоенного. Возьмём довольно сложный пример: притяжение планет.

    Луна вертится вокруг Земли благодаря тому, что она притягивается к Земле, но по Третьему закону Ньютона Луна тоже притягивает Землю к себе. Однако, из-за того, что их массы разные, Луна не может притянуть Землю, но у неё получается вызвать отливы и приливы в морях и океанах.

  4. Формула.

    Математически это утверждение можно записать так: F1 = -F2, где F1 — это сила, с которой первое тело действует на второе, а F2 — сила, с которой второе тело действует на первое.

Источник: https://tvercult.ru/nauka/zakonyi-nyutona-kratko-i-ponyatno-formulirovki-i-primeryi

Законы Ньютона: кратко и понятно о формулах и формулировках на конкретных примерах

Первый закон ньютон примеры

В школьном курсе физики изучаются три закона Ньютона, являющиеся основой классической механики. Сегодня с ними знаком каждый школьник, но во времена великого ученого подобные открытия считались революционными. Законы Ньютона, кратко и понятно будут описаны ниже, они помогают не только понять основу механики и взаимодействия объектов, но и помогают записать данные в качестве уравнения.

Вводная информация

Впервые три закона Иссак Ньютон описал в труде «Математические начала натуральной философии» (1867 год), в котором были подробно изложены не только собственные выводы ученого, но все знания по этой теме открытые другими философами и математиками. Таким образом, труд стал фундаментальным в истории механики, а позднее и физики. В нем рассмотрены перемещение и взаимодействие массивных тел.

Интересно знать! Исаак Ньютон был не только талантливым физиком, математиком и астрономом, но и считался гением в механике. Занимал должность президента королевского общества Лондона.

Каждое утверждение освещает одну из сфер взаимодействия и перемещения предметов в природе, правда обращение к ним было несколько упразднено Ньютоном, и они были приняты как точки без определенного размера (математические).

Именно это упрощение позволило проигнорировать естественные физические явления: воздушное сопротивление, трение, температуру или другие физические показатели объекта.

Полученные данные могли быть описаны только по времени, массе или длине. Именно из-за этого формулировки Ньютона обеспечивают лишь подходящие, но приближенные значения, которые нельзя использовать для описания точной реакции крупных или изменяемых по форме объектов.

Перемещение массивных предметов, которые участвуют в определениях, принято исчислять в инерциальной системе отсчета, представленной в виде системы координат из трех измерений, и при этом она не увеличивает свою скорость и не оборачивается вокруг своей оси.

Ее часто называют системой отсчета Ньютона, но при этом ученый никогда не создавал и не использовал подобной системы, а использовал нерациональную. Именно в этой системе тела могут двигаться так, как описывает это Ньютон.

Первый закон

Называется законом инерции. Не существует его практической формулы, зато есть несколько формулировок.

В учебниках по физике предлагается следующая формулировка первого закона Ньютона: есть инерциальные системы отсчета, в отношении которых объект, если он свободен от воздействия любых сил (или же они моментально компенсируется), находиться в полном покое или же двигается по прямой и с одинаковой скоростью. Что означает данное определение и как его понять?

Простыми словами первый закон Ньютона объясняется так: любое тело, если его не трогать и никоим образом не воздействовать на него, будет оставаться постоянно в состоянии покоя, то есть бесконечно стоять на месте. То же самое происходит и при его движении: оно будет равномерно двигаться по заданной траектории бесконечно, пока на него не воздействует что-либо.

Подобное утверждение озвучивал Галилео Галилей, но не смог уточнить и точно описать это явление. В этой формулировке важно правильно понять, что такое инерциальные системы отсчета. Если сказать совсем простыми словами, то это система, в которой выполняется действие данного определения.

! Изучаем термины: энтропия – что же это такое простыми словами

В мире можно увидеть огромное множество подобных систем, если понаблюдать за движением:

  • поезда на заданном участке с одинаковой скоростью;
  • Луны вокруг Земли;
  • колеса обозрения в парке.

! Как правильно перевести МПА атмосферы

В качестве примера рассмотрим некоего парашютиста, который уже раскрыл парашют и движется прямолинейно и при этом равномерно по отношению к поверхности Земли.

Движение человека не прекратиться до тех пор, пока земное притяжение будет компенсироваться движением и сопротивлением воздуха.

Как только это сопротивление уменьшится, то притяжение увеличится, что приведет к изменению скорости парашютиста – его движение станет прямолинейным и равноускоренным.

Именно в отношении этой формулировки существует яблочная легенда: Исаак отдыхал в саду под яблоней и размышлял о физических явлениях, когда с дерева сорвалось спелое яблоко и упало в траву. Именно ровное падение заставило ученого изучить этот вопрос и выдать в итоге научное объяснение движению предмета в некой системе отсчета.

Интересно знать! Помимо трех явлений в механике, Исаак Ньютон также объяснил движение Луны как спутника Земли, создал корпускулярную теорию света и разложил радугу на 7 цветов.

Второй закон

Данное научное обоснование касается не просто движения предметов в пространстве, а взаимодействия их с другими объектами и результатов этого процесса.

Закон гласит: увеличение скорости объекта с некоторой постоянной массой в инерциальной системе отсчета прямо пропорционально силе воздействия и обратно пропорционально постоянной массе движущегося предмета.

Проще говоря, если существует некое движущиеся тело, масса которого не изменяется, и на него вдруг начнет воздействовать посторонняя сила, то оно начнет ускоряться. А вот скорость ускорения будет прямо зависеть от воздействия и обратно пропорционально зависеть от массы движущегося предмета.

Для примера можно рассмотреть снеговой шар, который катиться с горы. Если шар толкать по ходу движения, то ускорения шара будет зависеть от мощности воздействия: чем она больше, тем больше ускорение.

Но, чем больше масса данного шара, тем меньше будет ускорение.

Данное явление описывается формулой, в которой учитывается ускорение, или «a», равнодействующая масса всех воздействующих сил, или «F», а также масса самого предмета, или «m»:

а = F/m

Следует уточнить, что данная формула может существовать только в том случае, если равнодействующая всех сил не меньше и не равна нулю. Применяется закон только относительно тел, которые двигаются со скоростью меньше световой.

! Квантовые постулаты Нильса Бора: кратко об основных положениях

Третий закон

Многие слышали выражение: «На каждое действие есть свое противодействие». Его часто используют не только в общеобразовательных целях, но и воспитательных, объясняя, что на каждую силу найдется большая.

Эта формулировка пошла от очередного научного утверждения Исаака Ньютона, а точнее его третьего закона, который объясняет взаимодействие различных сил в природе относительно какого-либо тела.

Третий закон Ньютона определение имеет такое: предметы оказывают воздействие друг на друга с силами одинаковой природы (соединяющей массы предметов и направлены вдоль прямой), которые равны по своим модулям и при этом направлены в разные стороны. Данная формулировка звучит достаточно сложно, но простыми словами объяснить закон легко: каждая сила имеет свое противодействие или равную силу, направленную в обратную сторону.

Гораздо проще будет понять смысл закона, если в качестве примера взять пушку, из которой стреляют ядрами. Пушка воздействует на снаряд с той же силой, с которой снаряд воздействует на пушку.

Подтверждением этого будет небольшое движение пушки назад во время выстрела, что подтвердит воздействие ядра на орудие.

Если взять как пример тоже самое яблоко, которое падает на землю, то станет понятно, что яблоко и земля воздействуют друг на друга с равной силой.

! В чем заключается принцип теории Гюйгенса Френеля

Закон имеет также математическое определение, в котором используется сила первого тела (F1) и второго (F2):

F1 = -F2

Знак минуса сообщает о том, что векторы сил двух разных тел направлены в противоположные стороны. При этом важно помнить, что данные силы не компенсируют друг друга, поскольку направлены относительно двух тел, а не одного.

Вывод

Данные законы Ньютона кратко и четко необходимо знать каждому взрослому человеку, поскольку они являются основой механики и действуют в повседневной жизни, несмотря на то, что не при всех условиях данные закономерности соблюдаются. Они стали аксиомами в классической механике, и на основе их были созданы уравнения движения и энергии (сохранение импульса и сохранение механической энергии).

Источник: https://znaniya.guru/fizika/zakon-isaaka-nyutona.html

Первый закон Ньютона

Первый закон ньютон примеры

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Законы динамики Ньютона (классическая динамика) имеют ограниченную область применимости. Они справедливы для макроскопических тел, движущихся со скоростями, много меньшими, чем скорость света в вакууме.

Формулировка первого закона Ньютона (он также известен как закон инерции):

Первый закона Ньютона Существуют такие системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела или действие этих тел скомпенсировано.

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Инерция Явление сохранения скорости движения тела при отсутствии внешних воздействий или при их компенсации называется инерцией. Поэтому первый закон Ньютона называют законом инерции.

Если равнодействующая всех сил, действующих на данное тело равна нулю, то тело движется равномерно и прямолинейно или не движется вовсе. В реальности добиться равенства нулю равнодействующей силы невозможно. Но можно пренебречь некоторыми действиями и выбрать такой участок движения, когда скорость тела существенно не меняется.

Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

ИСО инерциальные системы отсчета – это системы отсчета, в которых выполняется 1-й закон Ньютона.

Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины – инертную массу тела и силу.

Масса

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сравнение масс двух тел.

\[ \dfrac{m_1}{m_2} =-\dfrac{a_2}{a_1} \]

В этом соотношении величины \( a_1\)  и \( a_2\) следует рассматривать как проекции векторов \( a_1\)  и \( a_2\) на ось OX. Знак «минус» в правой части формулы означает, что ускорения взаимодействующих тел направлены в противоположные стороны.

В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг).

Масса любого тела может быть определена на опыте путем сравнения с массой эталона ( \( m_{\text{эт}} = 1 \text{кг} \) ). Пусть \( m_1 = m_{\text{эт}} = 1 \text{кг} \). Тогда

\[ m_2=-\dfrac{a_1}{a_2} m_{\text{эт}} \]

Масса тела – скалярная величина. Опыт показывает, что если два тела с массами \( m_1 \) и \( m_2 \) соединить в одно, то масса \( m \) составного тела оказывается равной сумме масс \( m_1 \) и \( m_2 \) этих тел:

\[ M = m_1 + m_2 \]

Это свойство масс называют аддитивностью.

Сила

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной, имеет модуль, направление и точку приложения.

Векторная сумма всех сил, действующих на тело, называется равнодействующей силой.

Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным.

Существует 4 основных типа взаимодействия:

  • гравитационное,
  • электромагнитное,
  • сильное,
  • слабое. 

Все взаимодействия являются проявлениями этих основных типов.

Примеры сил: сила тяжести, сила упругости, вес тела, сила трения, выталкивающая (архимедова) сила, подъемная сила.

Что такое сила? Сила — мера воздействия одного тела на другое.

Сила — векторная величина. Сила характеризуется:

  • модулем (абсолютной величиной);
  • направлением;
  • точкой приложением.

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F0, с которой эта пружина при фиксированном растяжении действует на прикрепленное к ней тело, называют эталоном силы.

Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы \( \vec{F} \) и эталонной силы \( \vec{F_0} \) остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю \( \vec{F} \) = \( \vec{F_0} \).

Сравнение силы \( \vec{F} \) с эталоном. \( \vec{F} \) = \( \vec{F_0 } \)

Если измеряемая сила \( \vec{F } \) больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно. В этом случае измеряемая сила равна \( \vec{ 2 F_0 } \). Аналогично могут быть измерены силы \( \vec{ 3 F_0 } \), \( \vec{ 4 F_0 } \) и т. д.

Сравнение силы \( \vec{F } \) с эталоном. \( \vec{F} \) = \( \vec{2 F_0} \)

Измерение сил, меньших \( \vec{2 F_0} \)

Сравнение силы \( \vec{F } \) с эталоном. \( \vec{F} \) = \( \vec{2 F_0} \cos ( \alpha ) \)

Эталонная сила в Международной системе единиц называется Ньютон(Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с2

Размерность [Н]   

\[ 1\text{Н} = 1\dfrac{\text{кг}\cdot \text{м}}{\text{с}2} \]

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами. Сила измеряется по растяжению динамометра.

Не можешь написать работу сам?

Доверь её нашим специалистам

от 100 р.стоимость заказа

Источник: https://calcsbox.com/post/pervyj-zakon-nutona.html

ГосЗакон
Добавить комментарий