Правило умножения дробей на целое число

Умножение обыкновенных дробей: правила, примеры, решения

Правило умножения дробей на целое число

Еще одно действие, которое можно выполнять с обыкновенными дробями, – умножение. Мы попробуем разъяснить его основные правила при решении задач, покажем, как умножается обыкновенная дробь на натуральное число и как правильно выполнить умножение трех обыкновенных дробей и больше.

Как умножить одну обыкновенную дробь на другую

Запишем сначала основное правило:

Определение 1

Если мы умножим одну обыкновенную дробь, то числитель дроби, полученной в результате, будет равен произведению числителей исходных дробей, а знаменатель – произведению их знаменателей. В буквенном виде для двух дробей a/b и c/d это можно выразить как ab·cd=a·cb·d.

Посмотрим на примере, как правильно применить это правило. Допустим, у нас есть квадрат, сторона которого равна одной числовой единице. Тогда площадь фигуры составит 1 кв. единицу.

Если разделить квадрат на равные прямоугольники со сторонами, равными 14 и 18 числовой единицы, у нас получится, что он теперь состоит из 32 прямоугольников (потому что 8·4=32).

Соответственно, площадь каждого из них будет равна 132 от площади всей фигуры, т.е. 132 кв. единицы.

Далее нам надо выделить цветом часть исходного квадрата так, как это сделано на рисунке:

У нас получился закрашенный фрагмент со сторонами, равными 58 числовой единицы и 34 числовой единицы. Соответственно, для вычисления его площади надо умножить первую дробь на вторую. Она будет равна 58·34 кв. единиц. Но мы можем просто подсчитать, сколько прямоугольников входит во фрагмент: их 15, значит, общая площадь составляет 1532 квадратных единиц.

Поскольку 5·3=15 и 8·4=32, мы можем записать следующее равенство:

58·34=5·38·4=1532

Оно является подтверждением сформулированного нами правила умножения обыкновенных дробей, которое выражается как ab·cd=a·cb·d. Оно действует одинаково как для правильных, так и для неправильных дробей; с помощью него можно умножить дроби и с разными, и с одинаковыми знаменателями.

Разберем решения нескольких задач на умножение обыкновенных дробей.

Пример 1

Умножьте 711 на 98.

Решение

Для начала подсчитаем произведение числителей указанных дробей, умножив 7 на 9. У нас получилось 63. Затем вычислим произведение знаменателей и получим: 11·8=88. Составим их двух чисел ответ: 6388.

Все решение можно записать так:

711·98=7·911·8=6388

Ответ: 711·98=6388. 

Если в ответе у нас получилась сократимая дробь, нужно довести вычисление до конца и выполнить ее сокращение. Если же у нас получилась неправильная дробь, из нее надо выделить целую часть.

Пример 2

  Вычислите произведение дробей 415 и 556.

Решение

Cогласно изученному выше правилу, нам надо умножить числитель на числитель, а знаменатель на знаменатель. Запись решения будет выглядеть так:

415·556=4·5515·6=22090

Мы получили сократимую дробь, т.е. такую, у которой есть признак делимости на 10.

Выполним сокращение дроби: 22090 НОД (220, 90)=10, 22090=220:1090:10=229. В итоге у нас получилась неправильная дробь, из которой мы выделим целую часть и получим смешанное число: 229=249.

Ответ: 415·556=249.

Для удобства вычисления мы можем сократить и исходные дроби перед выполнением действия умножения, для чего нам надо привести дробь к виду a·cb·d. Разложим значения переменных на простые множители и одинаковые из них сократим.

Поясним, как это выглядит, используя данные конкретной задачи.

Пример 3

Вычислите произведение 415·556.

Решение

Запишем вычисления, исходя из правила умножения. У нас получится:

415·556=4·5515·6

Поскольку как 4=2·2, 55=5·11, 15=3·5 и 6=2·3, значит,4·5515·6=2·2·5·113·5·2·3.

Далее мы можем просто сократить некоторые множители и получить следующее: .

Нам осталось подсчитать несложные произведения в числителе и знаменателе и выделить целую часть из получившейся в итоге неправильной дроби:

2·113·3=229=249

Ответ: 415·556=249. 

Числовое выражение, в котором имеет место умножение обыкновенных дробей, обладает переместительным свойством, то есть при необходимости мы можем изменить порядок следования множителей:

ab·cd=cd·ab=a·cb·d

Как перемножить обыкновенную дробь с натуральным числом

Запишем сразу основное правило, а потом попробуем объяснить его на практике.

Определение 2

Чтобы умножить обыкновенную дробь на натуральное число, нужно умножить числитель этой дроби на это число. При этом знаменатель итоговой дроби будет равен знаменателю исходной обыкновенной дроби. Умножение некоторой дроби ab на натуральное число n  можно записать в виде формулы ab·n=a·nb.

Понять эту формулу легко, если вспомнить, что любое натуральное число может быть представлено в виде обыкновенной дроби со знаменателем, равным единице, то есть:

ab·n=ab·n1=a·nb·1=a·nb

Поясним нашу мысль конкретными примерами.

Пример 4

Вычислите произведение 227 на 5.

Решение 

В результате умножения числителя исходной дроби на второй множитель получим 10. В силу правила, указанного выше, мы получим в результате 1027. Все решение приведено в этой записи:

227·5=2·527=1027

Ответ: 227·5=1027 

Когда мы перемножаем натуральное число с обыкновенной дробью, то часто приходится сокращать результат или представлять его как смешанное число.

Пример 5

Условие: вычислите произведение 8 на 512.

Решение

По правилу выше мы умножаем натуральное число на числитель. В итоге получаем, что 512·8=5·812=4012. Итоговая дробь имеет признаки делимости на 2, поэтому нам нужно выполнить ее сокращение:

НОК(40, 12)=4, значит, 4012=40:412:4=103

Теперь нам осталось только выделить целую часть и записать готовый ответ: 103=313.

В этой записи можно видеть все решение целиком: 512·8=5·812=4012=103=313.

Также мы могли сократить дробь с помощью разложения числителя и знаменателя на простые множители, и результат получился бы точно таким же.

Ответ: 512·8=313.

Числовое выражение, в котором натуральное число умножается на дробь, также обладает свойством перемещения, то есть порядок расположения множителей не влияет на результат:

ab·n=n·ab=a·nb

Как выполнить умножение трех и более обыкновенных дробей

Мы можем распространить на действие умножения обыкновенных дробей те же свойства, которые характерны для умножения натуральных чисел. Это следует из самого определения данных понятий.

Благодаря знанию сочетательного и переместительного свойства можно перемножать три обыкновенные дроби и более. Допустимо переставлять множители местами для большего удобства или расставлять скобки так, как будет легче считать.

Покажем на примере, как это делается.

Пример 6

Умножьте четыре обыкновенные дроби 120, 125, 37 и 58.

Решение: для начала сделаем запись произведения. У нас получится 120·125·37·58. Нам надо перемножить между собой все числители и все знаменатели: 120·125·37·58=1·12·3·520·5·7·8.

Перед тем, как начать умножение, мы можем немного облегчить себе задачу и разложить некоторые числа на простые множители для дальнейшего сокращения. Это будет проще, чем сокращать уже готовую дробь, получившуюся в результате.

1·12·3·520·5·7·8=1·(2·2·3)·3·52·2·5·5·7(2·2·2)=3·35·7·2·2·2=9280

Ответ: 1·12·3·520·5·7·8=9280.

Пример 7

Перемножьте 5 чисел 78·12·8·536·10.

Решение

Для удобства мы можем сгруппировать дробь 78 с числом 8, а число 12 с дробью 536, поскольку при этом нам будут очевидны будущие сокращения. В итоге у нас получится:
78·12·8·536·10=78·8·12·536·10=7·88·12·536·10=71·2·2·3·52·2·3·3·10==7·53·10=7·5·103=3503=11623

Ответ: 78·12·8·536·10=11623.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/umnozhenie-obyknovennyh-drobej/

Правила умножения дробей с разными знаменателями, примеры

Правило умножения дробей на целое число

> Наука > Математика > Умножение простых и смешанных дробей с разными знаменателями

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы — доли.

Доли — это равные части, на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры.

Образованное от глагола «дробить» — разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

  • Умножение дробей с разными знаменателями
  • Как происходит перемножение
  • Простейшие действия с дробями онлайн

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

: Как найти разность чисел в математике?

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи — Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи — просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей:

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями.

Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель — произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

: как обозначается площадь, примеры для вычисления.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/b * c/d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

: что такое модуль числа?

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/9 * 6/7 = 8*6 / 9*7 = 48/63 = 16/21;
  • 4/6 * 3/7 = 2/3 * 3/7 2*3 / 3*7 = 6/21.

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/11 =1 + 4/11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

Пример 1.

2 1/2 * 7 3/5 = 2 + 1/2 * 7 + 3/5 = 2*7 + 2* 3/5 + 1/2 * 7 + 1/2 * 3/5 = 14 + 6/5 + 7/2 + 3/10 = 14 + 12/10 + 35/10 + 3/10 = 14 + 50/10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть, записать правило для этого действия можно формулой:

a * b/c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/15 = 12/15 + 12/15 + 12/15 + 12/15 = 48/15 = 3 1/5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/f = e/f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Пример 2.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/3 * 4 1/5 = 5/3 * 21/5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

Простейшие действия с дробями онлайн

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях — так называемые онлайн-калькуляторы для расчета дробей.

Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить».

Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена.

В старших классах рассматривают уже не простейшие виды, а целые дробные выражения, но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде.

Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя — свои достоинства, — не во власти человека, но всякий может уменьшить своего знаменателя — своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Источник: https://obrazovanie.guru/nauka/matematika/umnozhenie-prostyh-i-smeshannyh-drobej-s-raznymi-znamenatelyami.html

Правила умножения дробей: простых, смешанных, десятичных

Правило умножения дробей на целое число

Переходя из начальной школы в среднюю, учащиеся на уроках математики изучают простые и десятичные дроби и вычисления, связанные с ними. Сложение и вычитание простых дробей требуют приведения их к одному знаменателю, затем производятся математические действия с дробями с одинаковыми знаменателями. Мы будем рассматривать деление и умножение дробей.

Умножение простых дробей

Умножение дробей — пожалуй, самое простое из вычислений, связанных с дробями. Правила несложные, и решение не должно вызвать затруднений. Умножение обыкновенных дробей входит в программу математики за 5 класс.

Умножаем простые дроби

Если требуется найти произведение двух простых дробей, нужно перемножить числители и записать результат в числитель ответа, затем перемножить знаменатели и результат записать в знаменатель:

\({{7}\over{8}}×{{2}\over{5}}={{14}\over{40}}\)

Эту дробь можно сократить, получим \({{7}\over{20}}\).

«Сокращение дробей»

Иногда школьники задают вопрос: как производить умножение дробей с разными знаменателями. При необходимости умножить одну дробь на другую не имеет значения – с одинаковыми они или с разными знаменателями. А вот попытаться максимально сократить числа до вычислений и после них – желательно. Это ускорит решение.

Для сокращения нужно попробовать разложить числа на простые множители:

12 = 2 х 2 х 3;

15 = 5 х 3.

Четные числа можно сократить, разделив на 2. После сокращения чисел вычисления будет производить легче:

Для решения задач с обыкновенными дробями можно пользоваться переместительным и сочетательным свойствами умножения. Это позволяет упростить решение сложных примеров с несколькими множителями, переставив их местами, расставив скобки, что позволит сократить дроби.

Пример

\({{2}\over{9}}×{{12}\over{18}}\)

сократим \({{12}\over{18}}={{2}\over{3}}\)

решаем \({{2}\over{9}}×{{2}\over{3}}={{2×2}\over{9×3}}={{4}\over{27}}\)

Математика: переместительное свойство умножения

Умножение неправильных дробей производится так же, после вычисления при возможности лучше провести сокращение дроби.

Умножаем простую дробь на натуральное число

Если один множитель — простая дробь, а другой — целое число, числитель умножается на это число, а знаменатель остается без изменения. Объяснение простое: любое натуральное число можно записать в виде дроби:

5 = \({{5}\over{1}}\);

Поэтому запись вычисления будет выглядеть так:

\({{3}\over{8}}×4\)= \({{3}\over{8}}×{{4}\over{1}} = {{12}\over{8}} ={{3}\over{2}}\).

Из неправильной дроби выделим целую часть: \({{3}\over{2}}\) = 1 \({{1}\over{2}}\)

Умножаем простую дробь на смешанную

Если необходимо перемножить простую дробь на смешанную, вторую нужно превратить в неправильную и произвести вычисления по приведенному выше правилу:\({{3}\over{5}}×1{{1}\over{3}}\) = \({{3}\over{5}} ×{{4}\over{3}} = {{12}\over{15}}\).

Сокращаем дробь:

\({{12}\over{15}}\) = \({{4}\over{5}}\).

Умножаем смешанную дробь на смешанную

Такие примеры решаются по тому же принципу: обе дроби превращают в неправильные, перемножают и сокращают:

1 \({{1}\over{5}}\) х 2 \({{1}\over{3}}\) = \({{6}\over{5}}\) х \({{7}\over{3}}\) = \({{42}\over{15}}\) = \({{14}\over{5}}\) = 2 \({{4}\over{5}}\).

«Правила умножения дробей»

Умножаем обратные дроби

Обратными называют дроби, у которых числитель первой дроби равен знаменателю второго, а знаменатель первой дроби равен числителю второй:

Примеры:
\({{4}\over{5}}\) и \({{5}\over{4}}\);

При перемножении между собой взаимно обратных дробей результат будет равен единице.

Действительно, \({{4}\over{5}} ×{{5}\over{4}}={{4 × 5}\over{5 × 4}} = {{20}\over{20}}\) = 1.

Умножение отрицательных дробей

Эта тема может вызывать трудности, поэтому важно запомнить следующие правила:

Поэтому до проведения операций с числами нужно «разобраться» со знаками, вынеся их за границы умножения. Если в итоге всех действий останется один «минус», ответом будет отрицательное число, если все «минусы» сократятся – положительное.

Умножение десятичных дробей

Операции с умножением десятичных дробей можно произвести двумя способами:
— Представив десятичную дробь в виде простой:

0,25 х 2,5 = \({{25}\over{100}}\) х \({{250}\over{100}}\) = \({{625}\over{1000}}\).

Умножение десятичных дробей входит в программу математики за 6 класс. Кажущиеся сложными примеры, когда один множитель — десятичная дробь, а другой — обыкновенная, сводятся к тому, что их нужно привести к одному виду – к которому проще:

0,25 × \({{3}\over{4}}\) = \({{25}\over{100}}\) × \({{3}\over{4}}\) = \({{3}\over{16}}\);

Разберем подробнее:

Десятичную дробь 0,25 представили в виде обыкновенной дроби \({{25}\over{100}}\), сократив ее на 25 получим дробь \({{1}\over{4}}\)

затем умножаем \({{1}\over{4}}×{{3}\over{4}}={{1×3}\over{4×4}}\)

Правила умножения дробей можно записать в виде формулы:

\({{a}\over{b}}\) x \({{c}\over{d}}\) = \({{a × c}\over{b × d}}\).

Правила умножения дробей

Понимать правила умножения дробей важно еще и потому, что деление их сводится тоже к действию умножения: при необходимости разделить обыкновенную дробь на обыкновенную, делимое станет первым множителем, а второй множитель — дробь, обратная делителю:
\({{5}\over{9}}\):\({{1}\over{3}}\)=\({{5}\over{9}}\) × \({{3}\over{1}}\) = \({{15}\over{9}}\) = \({{5}\over{3}}\)

Преобразуем 1\({{2}\over{3}}\).

Математика: переместительное свойство умножения

При умножении и делении дробей нужно быть очень внимательными при записи, особенно при сокращении и вычислениях. Не ленитесь записать лишнее промежуточное вычисление: лучше потратить на запись несколько минут, чем, ошибившись, пересчитывать все вновь.

Источник: http://razvitiedetei.info/razvitie-shkolnika/matematika-pravila-umnozheniya-drobej.html

Умножение и деление дробей

Правило умножения дробей на целое число

2 августа 2011

В прошлый раз мы научились складывать и вычитать дроби (см. урок «Сложение и вычитание дробей»). Наиболее сложным моментом в тех действиях было приведение дробей к общему знаменателю.

Теперь настала пора разобраться с умножением и делением. Хорошая новость состоит в том, что эти операции выполняются даже проще, чем сложение и вычитание. Для начала рассмотрим простейший случай, когда есть две положительные дроби без выделенной целой части.

Чтобы умножить две дроби, надо отдельно умножить их числители и знаменатели. Первое число будет числителем новой дроби, а второе — знаменателем.

Чтобы разделить две дроби, надо первую дробь умножить на «перевернутую» вторую.

Обозначение:

Из определения следует, что деление дробей сводится к умножению. Чтобы «перевернуть» дробь, достаточно поменять местами числитель и знаменатель. Поэтому весь урок мы будем рассматривать в основном умножение.

В результате умножения может возникнуть (и зачастую действительно возникает) сократимая дробь — ее, разумеется, надо сократить. Если после всех сокращений дробь оказалась неправильной, в ней следует выделить целую часть. Но чего точно не будет при умножении, так это приведения к общему знаменателю: никаких методов «крест-накрест», наибольших множителей и наименьших общих кратных.

Задача. Найдите значение выражения:

По определению имеем:

Умножение дробей с целой частью и отрицательных дробей

Если в дробях присутствует целая часть, их надо перевести в неправильные — и только затем умножать по схемам, изложенным выше.

Если в числителе дроби, в знаменателе или перед ней стоит минус, его можно вынести за пределы умножения или вообще убрать по следующим правилам:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

До сих пор эти правила встречались только при сложении и вычитании отрицательных дробей, когда требовалось избавиться от целой части. Для произведения их можно обобщить, чтобы «сжигать» сразу несколько минусов:

  1. Вычеркиваем минусы парами до тех пор, пока они полностью не исчезнут. В крайнем случае, один минус может выжить — тот, которому не нашлось пары;
  2. Если минусов не осталось, операция выполнена — можно приступать к умножению. Если же последний минус не зачеркнут, поскольку ему не нашлось пары, выносим его за пределы умножения. Получится отрицательная дробь.

Задача. Найдите значение выражения:

Все дроби переводим в неправильные, а затем выносим минусы за пределы умножения. То, что осталось, умножаем по обычным правилам. Получаем:

Еще раз напомню, что минус, который стоит перед дробью с выделенной целой частью, относится именно ко всей дроби, а не только к ее целой части (это касается двух последних примеров).

Также обратите внимание на отрицательные числа: при умножении они заключаются в скобки. Это сделано для того, чтобы отделить минусы от знаков умножения и сделать всю запись более аккуратной.

Сокращение дробей «на лету»

Умножение — весьма трудоемкая операция. Числа здесь получаются довольно большие, и чтобы упростить задачу, можно попробовать сократить дробь еще до умножения. Ведь по существу, числители и знаменатели дробей — это обычные множители, и, следовательно, их можно сокращать, используя основное свойство дроби. Взгляните на примеры:

Задача. Найдите значение выражения:

По определению имеем:

Во всех примерах красным цветом отмечены числа, которые подверглись сокращению, и то, что от них осталось.

Обратите внимание: в первом случае множители сократились полностью. На их месте остались единицы, которые, вообще говоря, можно не писать. Во втором примере полного сокращения добиться не удалось, но суммарный объем вычислений все равно уменьшился.

Однако ни в коем случае не используйте этот прием при сложении и вычитании дробей! Да, иногда там встречаются похожие числа, которые так и хочется сократить. Вот, посмотрите:

Так делать нельзя!

Ошибка возникает из-за того, что при сложении в числителе дроби появляется сумма, а не произведение чисел. Следовательно, применять основное свойство дроби нельзя, поскольку в этом свойстве речь идет именно об умножении чисел.

Других оснований для сокращения дробей просто не существует, поэтому правильное решение предыдущей задачи выглядит так:

Правильное решение:

Как видите, правильный ответ оказался не таким красивым. В общем, будьте внимательны.

Источник: https://www.berdov.com/docs/fraction/multiplication_division/

ГосЗакон
Добавить комментарий